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Abstract: -This paper presents a novel algorithm for automatic QRS complex detection and premature 
ventricular contraction (PVC) beat recognition based on a generalised Teager energy operator (GTEO). The 
algorithm is divided into two stages: QRS detection and PVC beat recognition. An optimal GTEO order is 
determined for each stage. A second order GTEO is used for QRS detection, and a seventh order GTEO is used 
for PVC beat recognition. The proposed algorithm was tested using ECG signals from two recognised 
arrhythmia databases, the MIT-BIH and the AHA database. The signals chosen contained PVC beats as well as 
normal beats. Sensitivity and specificity parameters were used to measure the accuracy of the proposed 
algorithm. The main advantages of using a GTEO are simplicity, robustness and speed. The sensitivities 
achieved using the proposed algorithm were 99.5% for QRS detection and 97.4% for PVC recognition. The 
specificities achieved were 99.8% for QRS detection and 99.1% for PVC beat recognition.  
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1 Introduction 
The ECG signal is a result of the contraction and 
expansion of the myocardium. The ECG signal 
consists of three major waves referred to as P, QRS 
complex, and T waves. The P wave represents the 
depolarisation of the atrium, the QRS complex wave 
reflects the ventricular depolarisation, and the T 
wave represents repolarisation of the ventricles. 

It is relatively common for the heartbeat to be 
initiated by the Purkinje fibres rather than by the SA 
node. This causes ventricle contraction without 
atrium contraction first occurring. The resulting beat 
is called a premature ventricular contraction (PVC), 
also known as a ventricular premature beat (VPB). 
A single PVC beat does not usually pose a danger. 
However, frequent or consecutive PVC beats may 
be an indication of heart malfunction, which can 
cause sudden cardiac arrest (SCA) and sudden 
death. SCA is one of the main causes of natural 
death: in the USA, about 325,000 adults die of SCA 
each year. SCA is responsible for half of all deaths 
due to heart disease [1], so the detection of PVC 
beats is critical in clinical cardiology [2]. Indeed, 
most SCAs could be avoided if an early diagnosis is 
carried out by recording the ECG. However, some 
heart disorders cannot be detected by analysing 
short ECG recordings. So, long-term recording of 
the ECG is required. The purpose of this long-term 

recording (normally 24 hours) is to observe how the 
heart is functioning while the patient performs his or 
her daily activities. This type of recording is known 
as ambulatory, or Holter monitoring which is a 
suitable tool to detect and quantify PVC frequency.  
PVC beats can easily be recognised by eye on 
recorded ECG signals, because they are very 
different from normal heart beats. However, longer-
term monitoring systems such as Holter monitoring 
that record a large number of beats, necessitate 
automatic detection and classification. 

In last few decades, researchers have developed 
and implemented many different QRS detector 
algorithms, based on different techniques in both the 
time and frequency domains. Oweis and Al-Tabbaa 
[3] classified QRS detection techniques into seven 
categories: 

1. Time-domain thresholding - a ‘statistical 
approach’ 

2. Spectral analysis 
3. Geometry analysis 
4. Principal component analysis 
5. Fuzzy logic systems 
6. Artificial neural networks 
7. Neuro-fuzzy networks - ‘hybrid systems’ 
Time-domain thresholding methodology is the 

preferred approach, especially in real-time 
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processing. One of the most popular QRS detector 
algorithms based on the time-domain technique has 
been proposed by Tompkins and Pan [4]. The Pan-
Tomkins algorithm consists of several consecutive 
steps: preprocessing the ECG, passing the 
preprocessed signal through a bandpass filter with 
upper and lower cut-off frequencies of 5Hz and 15 
Hz respectively, a derivative filter to highlight the 
QRS complex, nonlinear operation where the signal 
is squared, and averaging the squared signal over 
0.15 seconds to achieve detection function with one 
local maximum point corresponding to each QRS 
complex. Finally, Tomkins used a decision rule to 
localise the R position. After QRS detection and R 
point localisation, the next step is to recognise 
abnormal beats such as PVCs.  
Several PVC recognising algorithms have been 
developed and implemented. Those algorithms are 
based on a different methodology to QRS detection. 
Frankiewicz and Al-Shrouf  [5] used the linear 
prediction method for the classification of ECG 
beats. The researchers Chiu et al. [6] used 
correlation coefficients to recognise PVC beats. Al-
Shrouf  [7], and Martis et al. [8] used Wavelet 
transform and neural networks for ECG beat 
classification . Javadi et al. [2] used a combination 
of neural networks and expert systems to distinguish 
between normal beats and PVC beats[2].  Das and 
Ari [9] proposed a combination of S-transform and 
wavelet transforms for classifying normal 
heartbeats, PVC arrhythmias and other 
abnormalities of the heart [9]. For that reason, beat 
detection and PVC recognition were conducted 
using a generalised Teager energy operator (GTEO) 
in the present research. 
 
 
2 Teager Energy Operator 
The Teager energy operator (TEO) is a nonlinear 
operator [10], [11], [12], [13],[14],[15] which 
provides useful information about the changes 
occurring in the energy of the signal. Unlike the 
traditional definition of energy, which provides 
information about the total energy contained in the 
signal, TEO deals with instantaneous energy.  
For an arbitrary continuous signal x(t), the Teager 
energy operator is defined in [10] as the following:  
ψ[x(t)] = ẋ2(t) − x(t)ẍ(t)      (1) 
where ẋ2(t) and ẍ(t) are first and second 
derivatives respectively. Let us consider the 
sinusoidal signal x(t), with frequency f, amplitude 
A and phase shift θ, such that x(t) = Acos(ωt + θ). 
The Teager energy of this signal is calculated as 
follows: 

 
ψ[x(t)] = (−Aωsin(ωt + θ))2 − 
                    �Acos(ωt + θ)��−Aω2cos(ωt + θ)� 
                = A2ω2sin2(ωt + θ) − 
                  �Acos(ωt + θ)��−Aω2c𝑜𝑜s(ωt + θ)� 

            = A2ω2�sin2(ωt + θ) + cos2(ωt + θ)� 
                =  𝐴𝐴2𝜔𝜔2      (2) 
Analogous to the continuous case, the TEO for 
discrete signals is given by:  
ψ[x(n)] = x2(n) − x(n − 1)x(n + 1)   (3) 
Research by Aihua, Long, and Hongsheng [11] 
finds out the same result for the discrete sinusoidal 
 x(n) = Asin(Ωn + θ),where A is the amplitude,  
Ω = 2πf/fs,  f is the frequency of the sampled 
signal, fs  is the sampling frequency and θ is the 
phase angle.  
ψ[x(n)] = x2(n) − x(n − 1)x(n + 1) 
                = A2sin2(Ω)                   (4) 
For sufficiently small  Ω,  sin(Ω) ≅ Ω , so in this 
case the Teager energy is given by 
 ψ[x(n)] ≅ A2Ω2      (5) 
Sharmila and Reddy [13] concluded that the TE 
function reflects the positive value of energy in time 
domain when modelling the energy of a signal 
generated from a single source, and the negative 
value of energy for a signal generated from two 
different sources.   
From equations 4 and 5, it is easy to conclude that 
two signals with same amplitude have different 
Teager energies. Moreover, the Teager energy 
operator reflects the signal amplitude and frequency 
at any particular point in time. The TEO is therefore 
very sensitive to changes in the frequency and the 
amplitude of the signal being tested [10], [11]. The 
TEO is also dependent on the energy of the system 
that generated the signal [13]. 

In this paper, the generalised Teager energy 
operator (GTEO) is introduced. The discrete Teager 
operator is generalised by replacing ‘1’ with an 
integer constant M in equation (3) [10]. In this 
paper, the constant M will be referred to as the order 
of the GTEO. So the M- order generalised Teager 
operator can be written as: 
[𝑥𝑥(𝑛𝑛)] = 𝑥𝑥2(𝑛𝑛)− 𝑥𝑥(𝑛𝑛 −𝑀𝑀)𝑥𝑥(𝑛𝑛 + 𝑀𝑀)               (6) 
Considering the discrete sinusoidal   
𝑥𝑥(𝑛𝑛) = 𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴(𝛺𝛺𝑛𝑛 + 𝜃𝜃) 
ψ[x(n)] = A2cos2(Ωn + θ) −  [Acos(Ω(n −M) +
                     θ) Acos(Ω(n + M) + θ)] 
               =   A2cos2(Ωn + θ) − (A2/2)[cos(Ω(n−
                   M) + θ + Ω(n + M) + θ) +
                 cos(Ω(n −  M) + θ − Ω(n + M) − θ)]   
              =   A2cos2(Ωn + θ) − (A2/2)[cos(2Ωn +
                 2θ) + cos(2ΩM)]   
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             =   A2cos2(Ωn + θ) − (A2/2)[1−
                 2sin2(Ωn + θ) + 1 − 2sin2(ΩM)]   
            =   A2cos2(Ωn + θ) − (A2/2) +
                 A2sin2(Ωn + θ) − (A2/2) + A2sin2(ΩM)  
          =   A2[cos2(Ωn + θ) + sin2(Ωn + θ)] − A2 +
                 A2sin2(MΩ)  
          = A2sin2(MΩ) = A2sin2 � f

fs
M�                (7) 

 

 
Figure 1. GTEO versus frequency for M = 1 2, 5 
and 7 
 
Figure 1 illustrates the Teager energy versus 
normalized frequency for sinusoidal signals with 
amplitudes of unity for the order M of the GTEO, 
with M = 1, 2, 5 and 7. If we consider GTEO as a 
system, equation (7) and Figure 1 could be 
considered as its frequency response. However, they 
could also represent the frequency spectrum if we 
treat GTEO as a signal. From equation (7) we can 
conclude many characteristics of the GTEO. Firstly, 
the phase shift has no effect on TE regardless of 
signal amplitude, frequency or the order M of the 
GTEO. 
 
From equation (7) it is easy to assume that for 
specific GTEO order M, two signals with the same 
amplitude but different frequencies have different 
values for TE. However, for the same signal, the 
value of TE varies with the value of M. From 
equation (7) we can conclude that, unlike the TEO 
which is a function of two parameters, the GTEO 
depends on three parameters: signal amplitude, 
signal frequency, and the GTEO order. However, 
both GTEO and TEO are complex to calculate, as 
they each involve information from three signal 
samples. The difference is that in TOE the three 
signal samples are consecutive, ‘n - 1, n, n + 1’, 
whereas in GTEO the samples are not consecutive: 
‘n - M, n, and n + M’. The TEO and the GTEO are 

both non-causal, so a time delay is desirable in real-
time monitoring. This time delay is greater in GTEO 
than in TEO, although values might be acceptable 
for small order values of GTEO (M ≪ fs).  
 
 
2.1 GTEO of sum of two uncorrelated signals  
Let us assume that two uncorrelated signals 
x1(n), and x2(n) are generated from two 
independent sources, and form a signal x(n) =
x1(n) + x2(n)  
The GTEO of the sum of those signals is: 
 E[(ψ[x(n))] = E[x2(n) − x(n − M)x(n + M)]   (8) 
 
Substituting x(n) = x1(n) + x2(n) in equation (8) 
gives: 
E[(ψ[x(n))] = E [(x1(n) + x2(n))2 − (x1(n − M)

+ x2(n − M))(x1(n + M)
+ x2(n + M))] 

                    = E �x1
2(n) + 2x1 (n)x2(n) + x2

2(n)
− x1(n − M)x1(n + M)
− x1(n − M)x2(n + M)
− x2(n − M)x1(n + M)
− x2(n − M)x2(n + M)� 

                       = E [x1
2(n) − x1(n − M)x1(n + M)]

+ E [x2
2(n)

− x2(n − M)x2(n + M)]
+ 2E� x1 (n)x2(n)�
− E[x1(n −M)x2(n + M)]
− E[x2(n − M)x1(n + M)] 

                  = E [x1
2(n) − x1(n − M)x1(n + M)]
+ E [x2

2(n)
− x2(n − M)x2(n + M)]
+ 2E� x1 (n)�E[x2(n)]
− E[x1(n −M)]E[x2(n + M)]
− E[x2(n − M)]E[x1(n + M)] 

= E [x1
2(n) − x1(n − M)x1(n + M)]

+ E [x2
2(n)

− x2(n − M)x2(n + M)]
+ 2E� x1 (n)�E[x2(n)]
− E[x1(n)]E[x2(n)]
− E[x2(n)]E[x1(n)] 

= E [x1
2(n) − x1(n − M)x1(n + M)]

+ E [x2
2(n)

− x2(n − M)x2(n + M)] 
         = E[(ψ[x1(n))] + E[(ψ[x2(n))]               (9) 
 
From equation (9), we can say that the TE of the 
sum of two signals equals the sum of their TEs.  
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3 Methodology of QRS Detection and 
PVC Recognition 
Almost all previous studies of TEO have considered 
that its output is proportional to the product of the 
amplitude and frequency of the input signal. All of 
these studies have taken into account the fact that 
the TEO can simultaneously reflect the 
instantaneous amplitude and frequency information 
of the input signal. Aihua et al. explained that the 
instantaneous amplitude and instantaneous 
frequency refer to the amplitude and frequency of 
the dominant sinusoidal component at any particular 
time [11]. This is not true in the case of a GTEO, 
because its output depends on the amplitude and the 
frequency of the signal as well as on the GTEO 
order form equation. For example, let us consider a 
signal consisting of two sinusoidal signals with 
different frequencies, one of which is dominant. For 
a specific order value, M, of the GTEO, the 
dominant signal is eliminated and the less dominant 
signal is increased. The opposite effect can be 
achieved with a different value of M. Both signals 
can be eliminated or increased or decreased by equal 
amounts for yet another value of M. 

Normal ECGs consist of three basic waves: 
the QRS complex, the P wave and the T wave. The 
frequency spectrum of the QRS complex is around 
15 - 17 Hz with a bandwidth of about 10 Hz. The 
frequency spectrum of the P wave is around 10 Hz, 
and that of the T wave is around 6 Hz. Abnormal 
ECG signals, for example PVC beats, have a 
different frequency spectrum to a normal beat. 

Using these GTEO features and based on 
frequency characteristics of ECG waves, QRS 
detection and PVC recognition are performed using 
GTEO. 

 
The first task is to determine the GTEO order M to 
be used in detection and recognition. ECG records 
from the American Heart Association (AHA) and 
MIT-BIH database were used as the experimental 
source of information. Records of both normal and 
abnormal ECG beats were chosen, exhibiting 
different noise levels. Figures 2 and 3 show two 
ECG signals and their GTEO for several values of 
M. Those signals are taken from N14 and V72 
records respectively. Investigations of several AHA 
and MIT-BIH  ECG records, and the information in 
Figures 2 and 3, indicate that the best order value of 
GTEO for beat detection is M = 2. However, the 
best order value for PVC recognition is M = 7. 
Figures 4 and 5 show two different ECG signals 

from N14 and V72 records respectively, for the 
GTEO order values of M = 2 and M = 7. 

Figure 2. Normal ECG beats and their GTEO for M 
= 1-7 
  

Figure 3. Normal and PVC beats and their GTEO 
for M = 1-7 
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Figure 4. Normal ECG beats and their GTEO for  
  M = 2 and M = 7 
 

Figure 5. Normal and PVC beats and their GTEO 
 for M = 2 and M = 7 
 
3.1  QRS Detection 
Traditionally, QRS detectors involve several stages: 
bandpass filtering, a derivative filter, nonlinear 
operation, and a moving averaged filter. In second 
order GTEO, there is no need to use a bandpass 
filter, nor a derivative, because the P wave, T wave 
and baseline are laminated and only the QRS 
complex is highlighted. So, in a second order 
GTEO-based QRS detector, the detection function is 
achieved directly. However, in some cases, more 
than one local maximum can be observed. To 
overcome this problem, a five-sample moving 

average filter is used. This results in a detection 
function with one local maximum point 
corresponding to each QRS complex. To find the 
nth local maximum point, an adaptive threshold is 
determined as follows: 
Thn = 0.85 ∗ max⁡(Dfn−1)            (10) 
where Thn  is the nth threshold and max⁡(Dfn−1) is 
the local maximum of the detection function 
corresponding to the previous beat. The first local 
maximum is defined as the maximum point during 
the first two seconds. To increase the efficiency of 
the detector, two strategies are adopted: the Search 
Back Strategy (SBS) and the Turn Off Strategy 
(TOS). The search back strategy is used to avoid 
missing any low-amplitude QRS, and involves 
reducing the threshold value and restarting the 
search for the local maximum. The SBS is activated 
if the RR interval exceeds a specified time: this time 
is two seconds in the proposed QRS detector. The 
Turn Off Strategy is used to reduce the computation 
time, and is achieved by halting the search for the 
local maximum for 0.2 seconds.  

 
3.2  PVC Recognition 
A premature ventricular contraction beat has two 
main characteristics:  

i. it is wider than a normal QRS complex (≥ 
120 ms) with abnormal morphology 

ii. it occurs earlier than would be expected for 
the next beat.  

These two features are used to recognise PVC beats. 
In this paper, the normal beat and PVC 

beats are treated as two uncorrelated signals 
generated from two independent sources. As shown 
in equation (9), the GTEO of those two signals is 
the sum of the GTEO for each individual signal. The 
frequency and the amplitude of those two signals are 
different. As shown in equation (7), the GTEO 
depends on three parameters: signal amplitude, 
signal frequency and GTEO order M. The first two 
parameters are inherent in the signal, so we have no 
influence over them. The only parameter that is 
within our control is the order of the GTEO. As 
shown in the preceding discussion, there are values 
for the order M of the GTEO for which the TE of 
normal beats and PVC beats are approximately 
equal. There is also a value of M for which the 
GTEOs are completely different, which makes it 
easy to distinguish between them. The present 
research used a seventh order GTEO to distinguish 
PVC beats from normal beats. For more certainty in 
identifying PVC beats, the RR interval is taken into 
account, using the identifying characteristic of a 
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PVC beat as occurring earlier than would be 
expected for the next beat. 
PVC recognition is carried out as follows. After 
detecting a beat using a second order GTEO and 
calculating the RR interval, the seventh order GTEO 
is calculated for this beat. If the seventh order 
GTEO is more than 0.5 of the second order GTEO 
and the RR interval is less than 0.6 seconds, the beat 
is classified as a PVC beat. 
 
 
4 Results and Discussion 
ECG signals from the AHA and MIT-BIH databases 
were used to investigate the applicability and 
efficiency of the proposed algorithm for QRS 
detection and PVC recognition. Some of the records 
displayed normal beats; others displayed PVC beats. 
The results obtained have been compared with the 
results from Awandekar’s et al.  study [16]. To give 
a meaningful comparison, the same two 
performance parameters were used: sensitivity and 
specificity. Sensitivity measures the accuracy of 
detecting PVC beats; specificity represents the 
accuracy of rejecting normal beats as non-PVC 
beats. The sensitivity parameter Se is calculated 
using the following equation: 
𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝+𝐹𝐹𝑁𝑁
∗ 100%                                            (10) 

The specificity parameter Sp is calculated as follows: 
𝑆𝑆𝑝𝑝 = 𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝+𝐹𝐹𝑝𝑝
∗ 100%                                             (11) 

where, 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑁𝑁  and 𝐹𝐹𝑃𝑃 are true positive, false 
negative and false positive respectively. True 
positive is the number of true classified PVC beats. 
False negative is the number of PVC beats not 
classified as PVC beats. False positive means the 
number of non-PVC beats that are classified as PVC 
beats. The sensitivity parameter and the specificity 
parameter were also used to examine the accuracy 
of the proposed QRS detector. In this case, 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑁𝑁  
and 𝐹𝐹𝑃𝑃 are defined as follows. True positive is the 
number of QRS complexes detected correctly. False 
negative is the number of existing QRS complexes 
that are not detected. False positive is the number of 
non-QRS complexes detected as QRS. 
The results from the QRS detector are shown in 
Table 1., while Table 2 depicts the results of PVC 
recognition testing. 

Table 1. QRS detector results 
Data-
base 

ECG 
record 

Nr. of 
beats TP  FP  FN  Se Sp 

MIT-
BIH 

105 2572 2567 2 5 99.8 99.9 

106 2027 2021 2 6 99.7 99.9 

 119 1987 1969 3 18 99.1 99.8 

124 1619 1612 0 7 99.6 100 

200 2601 2590 5 11 99.6 99.8 

233 3079 3061 8 18 99.4 99.7 

AHA V71-
76 361 411 2 1 99.8 99.5 

Total 14246 14231 22 66 99.5 99.8 

Table 2. PVC recognition results 

Data-
base 

ECG 
record 

Nr. of 
PVC  
beats 

TP  FP  FN  Se Sp 

 
 
 

MIT-
BIH 

 
 

105 41 39 1 2 95.1 97.5 
106 520 508 3 12 97.7 99.4 
119 444 433 5 11 97.5 98.9 
124 47 45 1 2 95.7 97.8 
200 826 806 6 20 97.6 99.3 
233 831 809 7 22 97.4 99.1 

AHA V71-
76 81 78 2 3 96.3 97.5 

Total 2790 2718 25 72 97.4 99.1 
 

The results obtained by Awandekar et al. [16] are Se  
= 96.2%  and Sp  = 93.6%. However they did not 
mention which ECG records they used, nor how 
many beats there were. Also, the researchers 
Sharmila and Reddy [13] found Se  = 98-100% but 
did not calculate the specificity of their proposed 
algorithm. Moreover, their algorithm potentially 
increases the computation time because it involves 
calculating first the cosine transform and then its 
Teager energy. As well, the two studies used multi 
phases, time consumption QRS detector. In the 
present paper, the sensitivities achieved were 99.5% 
and 97.4 for QRS detector and PVC recognition 
respectively. The specificities achieved were 99.8% 
and 99.1 for QRS detection and PVC recognition 
respectively. 
 
 
5 Conclusion 
This paper introduces the concept of the generalised 
Teager energy operator technique. It demonstrates 
that the order value chosen for the GTEO depends 
on the nature of the signals and on the reason for the 
analysis. QRS complex detection and PVC beat 
recognition were carried out using the GTEO 
technique. Two different GTEO orders were used: a 
second order GTEO was used for QRS detection, 
and a seventh order GTEO was used for identifying 
PVC beats. Employing the GTEO technique for 
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ECG signal processing was simple, effective and 
robust. Only three samples of the signal were 
required for calculating the instantaneous GTEO. 
The proposed algorithm was tested using ECG 
signals from the MIT-BIH and AHA databases. Six 
ECG signal records were taken from each database, 
containing a total of 11,901 beats. These results 
show that the proposed system can detect QRS 
complexes effectively and recognise PVC beats 
accurately. However, artificial intelligence 
techniques should be used to improve the efficiency 
of PVC detection in the future. 
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